## Exercise 17

In Exercises 17 and 18, (a) write formulas for  $f \circ g$  and  $g \circ f$  and (b) find the domain of each.

$$f(x) = \sqrt{x+1}, \ g(x) = \frac{1}{x}$$

## Solution

## Part (a)

Calculate  $f \circ g$  first.

$$f \circ g = f(g(x))$$
$$= f\left(\frac{1}{x}\right)$$
$$= \sqrt{\frac{1}{x} + 1}$$
$$= \sqrt{\frac{1+x}{x}}$$

The denominator cannot be zero, and only the square root of a nonnegative number can be taken.

$$x \neq 0$$
 and  $\frac{1+x}{x} \ge 0$ 

The critical points for the inequality on the right are x = -1 and x = 0. Partition the real line at these values of x and test whether the inequality is true in the intervals.



$$x \neq 0$$
 and  $(x \leq -1 \text{ or } x \geq 0)$   
 $x \leq -1 \text{ or } x > 0$ 

Consequently, the domain for  $f \circ g$  is  $(-\infty, -1] \cup (0, \infty)$ .

## Part (b)

Calculate  $g \circ f$  second.

$$g \circ f = g(f(x))$$
$$= g\left(\sqrt{x+1}\right)$$
$$= \frac{1}{\sqrt{x+1}}$$

The denominator cannot be zero, and only the square root of a nonnegative number can be taken.

$$x + 1 \neq 0$$
 and  $x + 1 \ge 0$   
 $x + 1 > 0$   
 $x > -1$ 

Consequently, the domain for  $g \circ f$  is  $(-1, \infty)$ .