Exercise 17

In Exercises 17 and 18, (a) write formulas for $f \circ g$ and $g \circ f$ and (b) find the domain of each.

$$
f(x)=\sqrt{x+1}, g(x)=\frac{1}{x}
$$

Solution

Part (a)
Calculate $f \circ g$ first.

$$
\begin{aligned}
f \circ g & =f(g(x)) \\
& =f\left(\frac{1}{x}\right) \\
& =\sqrt{\frac{1}{x}+1} \\
& =\sqrt{\frac{1+x}{x}}
\end{aligned}
$$

The denominator cannot be zero, and only the square root of a nonnegative number can be taken.

$$
x \neq 0 \quad \text { and } \quad \frac{1+x}{x} \geq 0
$$

The critical points for the inequality on the right are $x=-1$ and $x=0$. Partition the real line at these values of x and test whether the inequality is true in the intervals.

$$
\begin{gathered}
x \neq 0 \quad \text { and } \quad(x \leq-1 \quad \text { or } \quad x \geq 0) \\
x \leq-1 \quad \text { or } \quad x>0
\end{gathered}
$$

Consequently, the domain for $f \circ g$ is $(-\infty,-1] \cup(0, \infty)$.

Part (b)

Calculate $g \circ f$ second.

$$
\begin{aligned}
g \circ f & =g(f(x)) \\
& =g(\sqrt{x+1}) \\
& =\frac{1}{\sqrt{x+1}}
\end{aligned}
$$

The denominator cannot be zero, and only the square root of a nonnegative number can be taken.

$$
\begin{gathered}
x+1 \neq 0 \quad \text { and } \quad x+1 \geq 0 \\
x+1>0 \\
x>-1
\end{gathered}
$$

Consequently, the domain for $g \circ f$ is $(-1, \infty)$.

